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SUMMARY

Robust multiarray analysis (RMA) is the most widely used preprocessing algorithm for Affymetrix and
Nimblegen gene expression microarrays. RMA performs background correction, normalization, and sum-
marization in a modular way. The last 2 steps require multiple arrays to be analyzed simultaneously.
The ability to borrow information across samples provides RMA various advantages. For example, the
summarization step fits a parametric model that accounts for probe effects, assumed to be fixed across
arrays, and improves outlier detection. Residuals, obtained from the fitted model, permit the creation of
useful quality metrics. However, the dependence on multiple arrays has 2 drawbacks: (1) RMA cannot be
used in clinical settings where samples must be processed individually or in small batches and (2) data
sets preprocessed separately are not comparable. We propose a preprocessing algorithm, frozen RMA
(fRMA), which allows one to analyze microarrays individually or in small batches and then combine the
data for analysis. This is accomplished by utilizing information from the large publicly available microar-
ray databases. In particular, estimates of probe-specific effects and variances are precomputed and frozen.
Then, with new data sets, these are used in concert with information from the new arrays to normalize and
summarize the data. We find that fRMA is comparable to RMA when the data are analyzed as a single
batch and outperforms RMA when analyzing multiple batches. The methods described here are imple-
mented in the R package fRMA and are currently available for download from the software section of
http://rafalab.jhsph.edu.
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1. INTRODUCTION

Affymetrix and Nimblegen gene expression microarrays are composed of oligonucleotide probes 25 bp
in length. These are designed to match transcripts of interest and are referred to as perfect match (PM)
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probes. Genes are typically represented by groups of these probes referred to as probe sets. The typical
probe set is comprised of 11 probes. Each array contains tens of thousands of probe sets. Mismatch (MM)
probes are also included; however, because RMA does not use MMs and Affymetrix appears to be phasing
them out, we do not discuss MMs here.

Statistical analysis of these arrays begins with the data generated from scanning and consists of re-
ducing the data from the probe level to the gene level in a step referred to as preprocessing. There are
numerous preprocessing algorithms. Bolstad (2004) provides an extensive list of the various algorithms
and compares them based on the Affymetrix HGU133a spike-in data set. He finds that, in general, meth-
ods that fit models across arrays outperform methods that process each array separately. Therefore, it
is not surprising that the most popular preprocessing algorithms perform multiarray analysis: these in-
clude RMA (Irizarryand others, 2003), GeneChip robust multiarray analysis (gcRMA) (Wuand others,
2004), Model-based expression indices (MBEI) (Li and Wong, 2001), and Probe logarithmic intensity
error (PLIER) estimation (Affymetrix, 2005). In this paper, we focus on RMA, the most widely used
procedure; however, the ideas presented here can be applied to most multiarray methods.

Like most preprocessing algorithms, RMA performs 3 steps: “background correction,” “normaliza-
tion,” and “summarization.” The last 2 steps require multiple arrays, and we briefly review them below.
The background correction step is performed on each array individually, and we do not discuss it here.
We refer the reader to Bolstad (2004) for a detailed explanation of the background correction procedure.

Once probe intensities have been background corrected, a normalization step is required to remove
variation due to target preparation and hybridization. This is necessary to make data from different arrays
comparable. Using a spike-in experiment, Bolstadand others(2003) demonstrated that quantile normal-
ization has the best overall performance among various competing methods. This algorithm forces the
probe intensity distribution to be the same on all the arrays. To create this “reference distribution,” each
quantile is averaged across arrays.

After background correction and normalization, we are left with the task of summarizing probe inten-
sities into gene expression to be used in downstream analysis. A simple approach is to report the mean or
median of the PM intensities in each probe set; however, this approach fails to take advantage of the well-
documented “probe effect.” Li and Wong (2001) first observed that the within-array variability between
probes within a probe set is typically greater than the variability of an individual probe across arrays. To
address this, Irizarryand others(2003) proposed the following probe-level model:

Yi jn = θin + φ jn + εi jn , (1.1)

with Yi jn representing the log2 background corrected and normalized intensity of probej ∈ 1, . . . , Jn in
probe setn ∈ 1, . . . , N on arrayi ∈ 1, . . . , I . Hereθin represents the expression of probe setn on arrayi
andφ jn represents the probe effect for thej th probe of probe setn. Measurement error is represented by
εi jn . Note thatθ is the parameter of interest as it is interpreted as gene expression.

For identifiability, the probe effects are constrained within a probe set to sum to zero; this can be
interpreted as assuming that on average the probes accurately measure the true gene expression. Note
that, given this necessary constraint, a least squares estimate ofθ would not change if the probe ef-
fects were ignored, i.eφin = 0 for all i and n. However, outliers are common in microarray data,
and robust estimates of theθs do change if we include the probe-effect parameters. This is illustrated
by Figure 1. In this figure, a value that appears typical when studying the data of just one array is
clearly detected as an outlier when appropriately measuring the probe effect. The figure also demon-
strates that failure to appropriately down weight this probe can result in a false difference when comparing
2 arrays.

To estimate theθs robustly, the current implementation of RMA in the Bioconductor R package affy
(Gautierand others, 2004) uses median polish, anad hocprocedure developed by Tukey (1977). How-
ever, Model 1.1 can be fit using more statistically rigorous procedures such asM-estimation techniques
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Fig. 1. Log2 probe-level expression for the WDR1 gene across 42 arrays from the Affymetrix HGU133a spike-in
experiment. The large pane shows expression values for 5 probes designed to measure the same gene across the 42
arrays. The left most pane shows the expression data for only array 17, and the top pane shows the expression values
from median and median polish. Ignoring the probe effect amounts to looking at only the left pane where probe 5 does
not appear to be an outlier. The large pane shows that probe 5 is easily detected as an outlier on array 17 when fitting
a multiarray model. The top pane shows the advantage of multiarray methods which account for the probe effect—the
median expression value for array 17 is overexpressed, but the expression value from median polish is not.

(Huber and others, 1981). An implementation of this approach is described in Bolstad (2004) and is
implemented in the Bioconductor R package affyPLM. In this implementation, the standard deviation
of the measurement errors is assumed to depend on probe set but not probe nor array, i.e. we assume
Var(εi jn ) = σ 2

n does not depend oni or j .
Originally, median polish was used over more statistically rigorous procedures due to its computa-

tional simplicity. Median polish has remained the default in the Bioconductor implementation of RMA be-
cause competing procedures have not outperformed it in empirically-based comparisons (data not shown).
However, theM-estimators provide an advantage for the development of quality metrics since estimates
of σ 2

n and standard error calculations for the estimates ofθ are readily available. Therefore, both median
polish andM-estimator approaches are currently widely used.

Although multiarray methods typically outperform single-array ones, they come at a price. For ex-
ample, a logistics problem arises from the need to analyze all samples at once which implies that data
sets that grow incrementally need to be processed every time an array is added. More importantly, as
we demonstrate later, artifacts are introduced when groups of arrays are processed separately. Therefore,
available computer memory limits the size of an experiment and the feasibility of large meta-analyses.
Furthermore, for microarrays to be used in clinical diagnostics, they must provide information based on a
single array.

Two multiarray tasks that current single-array methods cannot perform are (1) computing the reference
distribution used in quantile normalization and (2) estimating theφs and Var(εi jn ) in Model (1.1). Katz
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and others(2006) proposed performing these tasks by running RMA on a reference database of biolog-
ically diverse samples. The resulting probe-effect estimates,φ̂, and the reference distribution used in the
quantile normalization step were stored or “frozen” for future use. For a single new array, they proposed
the following algorithm: (1) background correct as done by RMA, (2) force the probe intensity to have the
same distribution as the frozen reference distribution (quantile normalization), and (3) for each probe set
report the median ofyi j −φ̂ j . They showed that this algorithm outperforms earlier attempts at single-array
preprocessing such as MAS5.0 but falls short of RMA.

Katz and others(2006) assumed that theφ j s are constant across studies; however, we find that some
probes behave differently from study to study. Note that to measure the gene expression in a sample, a
sequence of steps are carried out: (1) target preparation, (2) hybridization, and (3) scanning. We define
a microarray “batch” as a group that underwent these steps in the same laboratory during the same time
period. This should not be confused with an “experiment,” a group of arrays intended to be used collec-
tively to address a question. Experiments are typically composed of one or more batches. Because labo-
ratory technician experience and various environmental factors can alter the results of these steps (Fare
and others, 2003; Irizarryand others, 2005), one must be careful when comparing microarray data gen-
erated under different conditions. These between-batch differences are commonly referred to as “batch
effects,” Figure 2 demonstrates that some probes behave differently from batch to batch even after quan-
tile normalization. If enough probes behave this way, then it is no surprise that a procedure that esti-
mates probe effects for the batch in question, such as RMA, outperforms the method proposed by Katz
and others(2006). In this paper, we propose a methodology that takes this probe/batch interaction into
account to produce an improved single-array method. Furthermore, we noticed that even within batches,
variability differs across probes (see Figure 3). Current approaches assume Var(εi jn ) is constant across
probes. An approach that weights probes according to their precision is more appropriate.

In this paper, we expand upon the work of Katzand others(2006) to develop fRMA—a methodology
that combines the statistical advantages of multiarray analysis with the logistical advantages of single-
array algorithms. In Section 2, we describe the new procedure and the model that motivates it. In Section 3,
we demonstrate the advantages of fRMA. Finally, in Section 4, we summarize the findings.

Fig. 2. Plots demonstrating batch-specific probe effects. (A) Histogram ofF-statistics comparing between batch versus
within batch variability for each probe in the database. AnF-statistic of 1.31 corresponds to aP-value of 0.01 when
testing the null hypothesis: no batch-specific probe effect. Over half the probes have anF-statistic greater than 1.31
showing strong evidence against the probe effects being constant between batches. (B) Residuals for a probe obtained
by fitting a probe-level linear model to 300 arrays—50 from each of 6 different breast tumor studies. This is an
example of a probe that shows much greater variability between batches than within.
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Fig. 3. Plots demonstrating that different probes show different variability. (A) Histogram of average within-batch
residual standard deviation. The long right tail demonstrates that some probes are far more variable than others within
a batch. Treating these as being equally reliable as less variable probes produces suboptimal results. (B) Residuals
from fitting a probe-level linear model to a batch of 40 arrays from GSE1456. The probe denoted with large diamonds
shows considerably more variability than the other probes within the same probe set.

2. METHODS

We assume the following probe-level model:

Yi jkn = θin + φ jn + γ jkn + εi jkn . (2.2)

The parameters and notation here are the same as those in Model (1.1) with a few exceptions. First,
we added the notationk ∈ 1, . . . , K to represent batch and a random-effect term,γ , that explains the
variability in probe effects across batches. Note that for batchk, we can think ofφ jn + γ jkn as the batch-
specific probe effect for probej in probe setn. In our model, the variance of the random effect is probe
specific, Var(γ jkn) = τ2

jn . The second difference is that we permit the within-batch probe variability to

depend on probe as well, i.e. Var(εi jkn) = σ 2
jn .

The first step in our procedure was to create a reference distribution, to be used in quantile normal-
ization, and to estimate theφs, τs, andσs from a fixed set of samples. To accomplish this, we created a
database of 850 samples from the public repositories GEO (Edgarand others, 2002) and ArrayExpress
(Parkinsonand others, 2008). We refer to these as the training data set. We selected the arrays to balance
studies and tissues. Specifically, we generated all the unique experiment/tissue type combinations from
roughly 6000 well-annotated samples. We then randomly selected 5 samples from each experiment/tissue
type combination with at least 5 samples. This resulted in 170 experiment/tissue type combinations. The
GEO accession numbers for all 850 samples can be found in Supplementary Table 1 available atBiostatis-
ticsonline.

The standard way to fit Model (2.2), a random-effects model, to data known to have outliers is not
straightforward. Therefore, we adopted a modular approach, which we describe in detail here. First, we
fit Model (1.1) using a robust procedure to obtainφ̂ jn and θ̂in for each samplei and probej . We then
used the residuals,ri jkn = Yi jkn − (θ̂in + φ̂ jn) to estimate the variance termsτ2 andσ 2. Specifically, we
definedτ̂2

jn = 1
K

∑
k(r̄. jkn − r̄. j .n)2 andσ̂ 2

jn = 1
I K

∑
k
∑

i (ri jkn − r̄. jkn)
2, wherer̄. jkn = 1

I

∑
i r i jkn and

r̄. j .n = 1
I K

∑
k
∑

i r i jkn .
With these estimates in place we were then ready to define a preprocessing procedure for single arrays

and small batches. We motivate and describe these next.
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Table 1. For these results, we treated the spike-in data as a single batch. For each of the intensity strata,
we report summary assessments for accuracy, precision, and overall performance. The first column shows
the signal detection slope that can be interpreted as the expected observed difference when the true dif-
ference is a fold change of2. In parenthesis is the standard deviation (SD) of the log-ratios associated
with nonzero nominal log-ratios. The second column shows the SD of null log-ratios. The SD can be in-
terpreted as the expected range of observed log-ratios for genes that are not differentially expressed. The
third column shows the99.5th percentile of the null distribution. It can be interpreted as the expected
minimum value that the top100 nondifferentially expressed genes will reach. The fourth column shows
the ratio of the values in columns1 and2. It is a rough measure of SNR. The fifth column shows the prob-
ability that, when comparing2 samples, a gene with a true log fold change of2 will appear in a list of the
100 genes with the highest log-ratios. The preprocessing algorithm with the greatest SNR is displayed

in bold

Low

Preprocessing Accuracy Precision Performance

slope (SD) SD 99.5% SNR POT

RMA 0.25 (0.32) 0.10 0.36 2.50 0.36
fRMA—single array 0.25 (0.25) 0.11 0.45 2.27 0.22
fRMA—batch 0.26 (0.24) 0.10 0.36 2.60 0.33

Medium

Preprocessing Accuracy Precision Performance

slope (SD) SD 99.5% SNR POT

RMA 0.83 (0.37) 0.09 0.40 9.22 0.88
fRMA—single array 0.82 (0.37) 0.10 0.49 8.20 0.82
fRMA—batch 0.80 (0.35) 0.09 0.44 8.89 0.85

High

Preprocessing Accuracy Precision Performance

slope (SD) SD 99.5% SNR POT

RMA 0.57 (0.18) 0.06 0.22 9.50 0.97
fRMA—single array 0.58 (0.18) 0.06 0.23 9.67 0.98
fRMA—batch 0.62 (0.20) 0.07 0.25 8.86 0.97

2.1 fRMA algorithm

First, we background corrected each new array in the same manner as the training data set. Remember
RMA background correction is a single-array method. Second, we quantile normalized each of the new
arrays to the reference distribution created from the training data set. The final step was to summarize the
probes in each probe set. Note that the arrays analyzed are not part of any of the batches represented in
the training data set. For presentation purposes, we denote the new batch byl .

The first task in the summarization step was to remove the global batch effect from each intensity and
create a probe-effect-corrected intensity:

Y∗
i j ln ≡ Yi jln − φ̂ jn = θin + γ j ln + εi j ln .

The second task was to estimate theθs from these data using a robust procedure. A different approach
was used for single-array summarization and batch summarization.
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Single array. Here, we dropped thei and l notation because we are analyzing only one array and one
batch.

We estimatedθn with a robust mean that weights each of the data points by the inverse of its variance:

Var(Y∗
jn) = τ2

jn + σ 2
jn .

The log gene expression was then estimated by the weighted mean:

θ̂n =
Jn∑

j =1

w j n

v jn
Y∗

jn/

Jn∑

j =1

w j n

v jn

with v jn = τ̂2
jn + σ̂ 2

jn andw jn , the weights obtained from anM-estimator procedure. This statistic has
an intuitive interpretation—probes with large batch to batch (τ ) or array to array (σ ) variation should be
down weighted, as well as, intensities that are outliers (smallw).

Batch of arrays. Here, we dropped thel notation because this method is intended to be applied to arrays
from the same batch.

Note that the probe-effect-corrected dataY∗
jn ≡ {Y∗

i jn }i =1,...,I are correlated because they share the
random effectγ jn . We therefore implemented a robust procedure that accounts for this correlation. We
rewrote Model (2.2) in matrix notation:

Y∗
n = Xθθθ + δδδ.

Here Y∗
n ≡ (Y∗

1,n, . . . , Y∗
Jn,n)

′ is a vector of all the probe-effect-corrected intensities for probe setn,
θθθ ≡ (θ1,n, . . . , θI ,n)

′ are the parameters of interest,X ≡ 1(Jn×1) ⊗ I(I ×I ) is a matrix of indicator variables
andδδδ is a vector of correlated errors with covariance matrix666 ≡ (τ1,n, . . . , τJn,n)

′ × 1(1×Jn) ⊗ 1(I ×I ) +
(σ1,n, . . . , σJn,n)

′ × 1(1×Jn) ⊗ I(I ×I ). Here⊗ is used to represent the Kronecker product. Note that the
entries of666 were estimated from the training set and treated as known. Therefore, we can easily rotate the
intensities into independent identically distributed data:Z ≡ 666−1/2Y. We then estimated the transformed
parameters666−1/2θθθ using a standardM-estimator. Note that the final estimate can be expressed as a
weighted least squares estimate:

θ̂θθ = (X′666−1/2W666−1/2X)−1666−1/2W666−1/2Y∗
n

with W a diagonal matrix of the weights obtained from the robust procedure.
This estimate also has an intuitive interpretation as probes with large correlation get down weighted

and correlation is taken into account in the definition of distances used to define an outlier. Note that if
just one of the entries ofY∗

jn is large in absolute value, it is likely an outlier, but, if all entries are large, it
is probably due to a large batch-specific probe effect and is not considered an outlier.

3. RESULTS

To demonstrate the utility of the fRMA algorithm, we compared it to RMA. First, we assessed the prepro-
cessing algorithms in terms of accuracy, precision, and overall performance as done by “affycomp” and
“spkTools” (Irizarryand others, 2006; McCall and Irizarry, 2008). Then, we assessed robustness to batch
effects using 2 publicly available data sets.

We used the Affymetrix HGU133a spike-in data set to calculate measures of accuracy, precision,
and overall performance. To assess accuracy, we calculated the “signal detection slope,” the slope from
regressing observed expression on nominal concentration in the log2 scale. It can be interpreted as the
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expected difference in observed expression when the true difference is a fold change of 2; as such, the
optimal result is one. To assess precision, we computed the standard deviation of null log-ratios and
the 99.5th percentile of the null distribution. Here “null” refers to the transcripts that were not spiked in
and therefore should not be differentially expressed. The first precision measure is an estimate of the ex-
pected spread of observed log-ratios for nondifferentially expressed genes. The second precision measure
assesses outliers; we expect 0.5% of nondifferentially expressed genes to exceed this value. Lastly, we
calculated 2 measures of overall performance—the signal-to-noise ratio (SNR) and the probability of a
gene with a true log2 fold change of 2 being in a list of the 100 genes with the greatest fold change (POT).
These measures were computed in 3 strata based on average expression across arrays. For a more detailed
explanation of these measures, see McCall and Irizarry (2008).

First, the measures described above were calculated treating the data as a single batch; the results can
be seen in Table 1. Then, the same data were preprocessed in the 3 original batches in which the data
were generated; the results for these analyses can be seen in Table 2. In both tables, we also report the
results from preprocessing the data with fRMA one array at a time. When the data were preprocessed as
a single batch, RMA outperformed fRMA in the medium stratum based on SNR and POT. But in the low
and high strata, RMA and fRMA performed comparably. When we processed the data in batches, fRMA
outperformed RMA in all 3 strata primarily due to better precision.

To assess the effect of combining data preprocessed separately, we created 2 artificial batches each
containing the same 15 tissues from the E-AFMX-5 data set (Suand others, 2004) by randomly assigning
one sample from each tissue type to each batch. We then analyzed each batch separately with RMA and
fRMA. After obtaining a matrix of expression values for each batch, we performed hierarchical clustering
on the combined expression matrix. Figure 4 shows that when the samples were preprocessed with RMA,
they clustered based on the artificial batches, but when they were preprocessed with fRMA, they clustered
based on tissue type.

Table 2. Just as in Table 1 but processed in3 batches then combined foranalysis

Low

Preprocessing Accuracy Precision Performance

slope (SD) SD 99.5% SNR POT

RMA 0.25 (0.32) 0.14 0.47 1.79 0.25
fRMA—single array 0.25 (0.25) 0.11 0.45 2.27 0.22
fRMA—batch 0.26 (0.26) 0.10 0.33 2.60 0.39

Medium

Preprocessing Accuracy Precision Performance

slope (SD) SD 99.5% SNR POT

RMA 0.83 (0.39) 0.12 0.46 6.92 0.83
fRMA—single array 0.82 (0.37) 0.10 0.49 8.20 0.82
fRMA—batch 0.81 (0.36) 0.09 0.40 9.00 0.87

High

Preprocessing Accuracy Precision Performance

slope (SD) SD 99.5% SNR POT

RMA 0.58 (0.20) 0.08 0.26 7.25 0.95
fRMA—single array 0.58 (0.18) 0.06 0.23 9.67 0.98
fRMA—batch 0.58 (0.20) 0.06 0.21 9.67 0.97
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Fig. 4. Heatmaps of 15 tissue types hybridized on 2 arrays each and preprocessed in 2 batches—(A) was preprocessed
using RMA and (B) was preprocessed using single-array fRMA.

Table 3. This table displays coefficients obtained from regressing gene expression on array batch. RMA
shows a significant batch effect, while fRMA doesnot

RMA

Coefficients Estimate Standard Error P-value

Intercept 6.758 0.003 <0.001
Batch2 −0.014 0.003 <0.001
Batch3 0.002 0.004 0.658
Batch4 −0.004 0.004 0.338
Batch5 −0.010 0.003 0.004
Batch6 −0.021 0.004 <0.001

fRMA

Coefficients Estimate Standard Error P-value

Intercept 7.183 0.002 <0.001
Batch2 ≈0.000 0.003 0.949
Batch3 ≈0.000 0.003 0.937
Batch4 ≈0.000 0.003 0.885
Batch5 ≈0.000 0.003 0.968
Batch6 −0.001 0.003 0.656

Next, we compared batch effects using a publicly available breast cancer data set of 159 Affymetrix
HGU133a arrays accessible at the NCBI GEO database (Edgarand others, 2002), accession GSE1456
(Pawitanand others, 2005). The dates on which the arrays were generated varied from June 18, 2002
to March 8, 2003. We grouped the data into 6 batches based on these dates (see Supplementary Table 2
available atBiostatisticsonline) and processed each batch separately using fRMA. We also processed the
entire data set as one batch using RMA. Table 3 shows that there are statistically significant differences in
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average expression from batch to batch when the data are processed with RMA. These differences are not
present when the data are analyzed using fRMA.

4. DISCUSSION

We have described a flexible preprocessing algorithm for Affymetrix expression arrays that performs
well whether the arrays are preprocessed individually or in batches. The algorithm follows the same
3 steps as current algorithms: background correction, normalization, and summarization. Specifically,
we have improved upon the summarization step by accounting for between-probe and between-batch
variability.

Table 1 demonstrated that when analyzing batches of data together, RMA performed slightly better.
Table 2 showed that when analyzing data in batches, fRMA consistently outperformed RMA. Specifically,
fRMA showed greater precision than RMA.

Perhaps, the greatest disadvantage of multiarray preprocessing methods is the inability to make re-
liable comparisons between arrays preprocessed separately. Figure 4 showed the potentially erroneous
results that one might obtain when combining data preprocessed separately. Furthermore, Table 3 showed
that even if it were computationally feasible to preprocess all the data simultaneously with RMA, it would
be unwise to do so due to batch effects. Unlike RMA, fRMA accounts for these batch effects and thereby
allows one to combine data from different batches for downstream analysis.

As more data become publicly available, methods that allow simultaneous analysis of thousands
of arrays become necessary to make use of this wealth of data. fRMA allows the user to preprocess
arrays individually or in small batches and then combine the data to make inferences across a wide
range of arrays. This ability will certainly prove useful as microarrays become more common in clinical
settings.

The preprocessing methods examined here can be summarized based on what information they use
to estimate probe effects. RMA uses only the information present in the data being currently analyzed;
whereas fRMA utilizes both the information present in the data being analyzed and the information from
the database. By using both sources of information, fRMA is able to perform well across a variety of
situations.

The fRMA methodology can be easily extended to provide quality metrics for a single array.
Brettschneiderand others(2008) demonstrate that the normalized unscaled standard error (NUSE) can
detect aberrant arrays when other quality metrics fail. The NUSE provides a measure of precision for
each gene on an array relative to the other arrays. Precisions is estimated from the RMA model residuals.
Therefore, the NUSE is multiarray on 2 counts. Using the fRMA methodology, one can develop a single-
array version of NUSE. Precision can be estimated from the residuals described in Section 2 and the
relative precision can be computed relative to all the arrays in the training data set.

Finally, note that fRMA requires a large database of arrays of the same platform. Currently, our soft-
ware only handles 2 human arrays: HGU133a and HGU133Plus2. However, we have downloaded all
available raw data (CEL) files for 5 other popular platforms and expect to have software for these in the
near future.
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